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SUMMARY

Statistical density and amplitude tapering are combined to improve the radiation
characteristics of thinned, density tapered arrays by allowing changes in both element
density and amplitude weight to better approximate the model amplitude distribution.
Statistical density tapering (which uses only uniformly weighted elements) is extended so
that each element is allocated one of several possible values of amplitude weight according
to predefined selection probabilities. Increasing the number of possible values, or levels,
for amplitude weight can reduce the sidelobe levels of an array. Several choices of levels
and their probabilities can reduce sidelobes and satisfy the extension criteria. One of the
lowest sidelobe levels is produced if: (a) the amplitude levels are equi-spaced in the
allowable range between zero and unity, and (b) their selection probabilities are terms
from the binominal distribution of the appropriate order. The properties of arrays
designed using equi-spaced amplitude levels with binomially distributed selection
probabilities are calculated and described as a function of the number of levels and
aperture size.- It was found firstly that density and amplitude tapering cannot reduce the
sidelobe levels without an accompanying increase in the number of elements, and secondly
that it cannot sufficiently lower the sidelobes of a thinned, density tapered array to equal
the lowest obtainable from the comparable fully filled, amplitude tapered array. Thirdly
however it was found that density and amplitude tapering can reduce the minimum
aperture size and number of elements required to achieve a given sidelobe level.
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I INTRODUCTION

In this Memorandum statistical density( 1 ) and amplitude tapering are combined to
improve the radiation characteristics of density tapered arrays. Density tapered arrays are
thinned arrays of uniformly weighted elements. These elements are placed in an aperture
so that their density changes with position in proportion to a model amplitude distribution.
This distribution is one known to give low sidelobes if applied to a continuous aperture.
However, density tapered arrays only produce low sidelobes if they contain enough
elements for the change in element density to sufficiently approximate the shape of the
model amplitude distribution. Only larger aperture arrays can achieve this.



To improve the radiation characteristics of smaller aperture thinned arrays, and
larger aperture arrays with small numbers of elements, statistical density tapering has been
extended to arrays of elements with different amplitude weights. Changes in both element
density and amplitude weight can then be used to better approximate the model amplitude
distribution. The following sections describe firstly the general method used to extend
statistical density tapering, secondly its particular application to produce arrays with low
sidelobe levels, and thirdly the performance and properties of these arrays.

2 STATISTICAL DENSITY AND AMPLITUDE TAPERING

A fully filled array is one in which the elements are placed a half wavelength apart
at the intersection points of a regular square grid. The procedure for designing a
statistically density tapered array(l) may be described as one in which each element of a
fully filled array is allocated an amplitude weight of either zero or unity according to
predefined selection probabilities. As the zero weighted elements do not contribute to the
radiation pattern they can be removed to thin the array.

The selection probability for the unity weight is the product of two quantities, one
being the value of the normalised model amplitude distribution A at the element location,
the other being the thinning factor q. The factor q is set to a single value between zero
and unity for the whole array and controls the degree of thinning. Arrays with the unity
value for q are termed "naturally" thinned. Greater thinning is achieved by setting q to
a value less than unity. To allocate the weights a random number between zero and
unity is generated for each element. If the random number for an element is less than
the product qA it is allocated a unity weight, otherwise it is allocated a zero weight.
Over many selections the average amplitude weight for a single element equals qA.

The above description may be extended to one in which an amplitude weight is
allocated to each element from not two, but several, possible values. The selection
probabilities for these possible values, or levels, must be assigned so that over many
selections the average amplitude weight for a single element equals qA. That is, the
following equation must be satisfied:

pl01  + P2 Q2 . .... + PLOL - qA (1)

where Qi is the value of the amplitude level,
Pi its selection probability, and
L the total number of levels.

The probabilities Pi must be functions of the model amplitude distribution, so that Eqn (1)
is satisfied as a function of position in the aperture. The sum of the probabilities Pi
should equal unity. Hence:

Pl + P2 ..... + PL - 1.0 (2)

The probabilities and levels are constrained to have values in the following ranges:

0 XQ i 1 1.0 (3)

0 4 P, 1 1.0 (4)

Equations (1) to (4) state the basic criteria that must be satisfied for any extension.
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To account for unity and zero values of qA there has to be at least one unity level
with a selection probability of unity when qA is unity, and at least one zero level with a
selection probability of unity when qA is zero. For example, when qA equals zero each
term of the left hand side of Eqn (1) must also be zero, as each pi and Ri can only
have a positive value. Therefore the probabilities of the non-zero levels must be zero,
while that of the zero level must be unity. And when qA equals unity the left hand side
of Eqns (1) and (2) can be set equal and rearranged to give the following equation:

P1(I-01) + P2 (1-Q 2 ) ..... + PL(1-RL) - 0

Each term on the left hand side of the equation must be zero, so that the probabilities of
the non-unity levels must also be zero, while that of the unity level must be unity.

Amplitude weights are allocated to each element by an extension of the procedure
used for density tapered arrays. Again, a random number is generated for each element
of a fully filled array. Each amplitude level is then allocated a range equal to its
probability. The range for the first level runs from zero to Pl, that for the second level
from Pi to Pl + P2 and so on. As the probabilities add up to unity, the total range
also runs between zero and unity. The amplitude level selected is that whose range
includes the random number.

Some of the general properties of statistical density and amplitude tapered arrays are
derived in the remainder of this section. The radiation pattern of a density tapered array
is the sum of two terms(1 ). The first term is proportional by a factor of q2 to the
pattern of an equally sized, fully filled, fully amplitude tapered array (ie one with
elements having amplitude weights exactly equal to A). This latter array produces the
lowest sidelobes obtainable from a fully filled array. The second term is the average
value of the random sidelobes produced by a density tapered array, and equals:

m2 
q 2 A2

m-I m--I
S 2 (5)

q 2 ( An

where the summations are over the total number of elements in the aperture if the array
were fully filled M, and Am is the value of the normalised model amplitude distribution
at location m. The parameter Fm equals the amplitude weight allocated to the element
at location m. The bar denotes an average value. For a density tapered array each
value of Fm is selected randomly and independently from location to location, so that the
first term of the numerator of Eqn (5) may be expressed as:

rn-I r-I n-I m-I

Hence, Eqn (5) becomes:

S[



qA(l - qAM )

q-2 (6 )

For density and amplitude tapered arrays possible values for F are V, i .... A.
On average these levels are chosen a fraction PI, P2 ..... PL respectively of the total of a
large number of choices. Hence:

2 2 2
Pm " l 

+ 
P9e ..... + 9e

and the average sidelobe level is given by:

p [ i P -] q 2 11 
A 2 ]

"( 2 (7)
q 2 [ m A.

The average number of elements N i of each level in an array is given by the
following equation:

M

N1  Pi (8)

as, at each possible element location, an element of weight Qi will be chosen on average
a fraction Pi of the total of a large number of choices. The total average number of
elements in an array N is given by the sum of N i for each non-zero level.

3 THE SELECTION OF AMPLITUDE LEVELS AND PROBABILITIES TO REDUCE
SIDELOBES

3.1 NATURALLY THINNED ARRAYS

The amplitude levels and their selection probabilities that both satisfy Eqns (1)
to (4), and reduce the average random sidelobe level of an array, were determined
by comparing the properties of density and amplitude arrays with two and three
levels. An array with two levels is one that is density tapered only. For an array
with three levels, of which two must be unity and zero, Eqns (1), (2) and (7)
become:

p1 (A) + P2 (A)0 2  - A (9)

pl(A) + P2 (A) + P3 (A) - 1.0 (10)
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+1) (A) (A)Q~ - A 2
M-1 M-1

Am]2 (11)

where 01 is unity, 03 is zero, and the dependence of probability on A is now also
stated. There are two unknown variables - Q2 and one of the probabilities, for
example Pl. The remaining two probabilities can be determined from Eqns (9) and
(10).

No obvious choice of pi(A) and oi minimises the average sidelobe level S
Therefore, S was calculated from Eqn (11) for various selection of pg(A) and Qi.
As an example these calculations were performed for an array with a circular
aperture containing 812 possible element locations (ie 32 across a diameter). A 40
dB circular Taylor distribution was used as the model amplitude distribution. The
results are shown in Table I.

TABLE 1. Average Sidelobe Level of Two and Three Level Density and Amplitude
Tapered Arrays for Different Choices of Level and Selection Probability

Array size: Circular aperture array containing 812 possible element locations.

Model amplitude distribution: 40 dB (n = 4) Taylor distribution.

Values for the two level (density tapered) array are shown in column (1).

COLUMN NUMBER (1) (2) (3) (4) (5) (6) (7)

LEVELS I1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

12 0.0 0.5 0.25 0.75 0.50 0.67 0.75

1 - 0.0 0.0 0.0 0.0 0.0 0.0

PROBABI- 2 4/3 2 2 3 (1.33).
LITIES pI(A) A A A A A-A +A A (AA 4

P2 (A) I-A 2A. 4. 1.33. 2. 1.5. 1.33.

(1-A) (A- ) (A-i) (A2-A
3 ) (A-A

3 ) (A-A
4)

P3 (A) - (I-A)2  (1-4A- (1-1.33A (I-A (1-1.SA (1-1/33A

3A4 /3) -0.33A2) -A2+A3) -0.5A3) +0.33A4 )

AVERAGE SIDELOBE
LEVEL (calculated -28.6 -31.6 -30.4 -29.5 -29.5 -31.3 -30.8
from eqn (7) in
dB) _
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Results for the same array but with density tapering only are also included for
comparison. The average sidelobe levels of the three level arrays are all lower than
that of the density tapered array.

The amplitude levels and selection probabilities of the density tapered array
and the three level array with the lowest sidelobe level are shown in Columns (1)
and (2) of Table I respectively. It can be seen that the selection probabilities of
both arrays are terms of the following binomial distribution:

[A + (1-A)]L -1  (12)

It can also be seen that the extension from the former to the latter type of array
is achieved by increasing the order of the binomial distribution from I to 2. and
introducing the third level so that the three levels are equi-spaced in an allowable
range between zero and unity.

This extension may be extended further to arrays with several amplitude
levels. Again the levels are equi-spaced in the allowable range so that the ith level
is given by the following equation:

L - ( ) I - 1,2 ..... L (13)

Its selection probability is given by the relevant term from the binomial distribution
of Eqn (12). The order of the distribution equals the number of non-zero weight
levels. Hence the selection probability of the ith level is given by:

P()- (L-1)! A AL-1 (I-A) 1-1 (14)
i(A  " 0 -'-l 3! ( L -i) I

Assigning the levels and probabilities in this way satisfies the criteria expressed
in Eqns (1) to (4); as the levels and probabilities have values in the correct ranges,
the probabilities add up to unity, and the average amplitude weight equals A. This
last property can be derived either from the average value of the binomial
distribution, or by direct substitution into Eqn (1). Over many choices the standard
deviation of amplitude weight allocated to an element equals A(l-A)/(L-l)2. It
would be difficult to extend as simply some of the other levels and probabilities
shown in Table 1.

The levels and probabilities of Eqns (13) and (14) give one of the best
possible approximations to the model amplitude distribution, and hence one of the
lowest sidelobe levels possible, because the binomial distribution gives those levels
closest to A the highest selection probabilities, whatever the value of A, see
Table 2.
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TABLE 2. Values of levels and probabilities for a .7 level array

PROBABILITY
LEVEL VAU
NUMBER o TERM FROMLEVEL BINOMIALFOR FOR

DISTRIBUTION A - 0.7 A - 0.3

1 1.000 A16 0.003 0.000

2 0.938 16 A is(I-A) 0.023 0.000

3 0.875 120 A 4(I-A)2  0.073 0.000

4 0.813 560 A1 3 (I-A) 3  0.146 0.000

5 0.750 1820 A 12(I-A) 4  0.204 0.000

6 0.688 4368 Al1 (1-A)5  0.210 0.001

7 0.625 8008 A 10(I-A) 6  0.165 0.006

8 0.563 11440 A9 (1-A)7  0.101 0.019

9 0.500 12870 A8 (I-A) 0.049 0.049

10 0.438 11440 A7 (1-A)9  0.019 0.101

11 0.375 8008 A6 (I-A) 10  0.006 0.165

12 0.313 4368 A5 (I-A)1 1  0.001 0.210

13 0.250 1820 A4 (1-A)12  0.000 0.204

14 0.188 560 A3 (I-A) 13  0.000 0.146

15 0.125 120 A2 (1-A)14  0.000 0.073

16 0.063 16 A (1-A)15  0.000 0,023

17 0.000 (1-A) 0.000 0.003

3.2 ARRAYS WITH A THINNING FACTOR LESS THAN UNITY

The method described above may be modified to assign amplitude levels and
selection probabilities to an array with a thinning parameter less than unity. The
simplest modifications which also thin an array such that, as for a density tapered
which array, the number of elements is proportional to q are:

(a) Reducing the selection probabilities for the naturally thinned array by
the factor q. Hence:

pi(A) - q p1 (A) (15)

where p((A) are the selection probabilities for the array with q < 1.0. and
pi(A) are those given by Eqn (14). The amplitude levels defined by Eqn (13)
remain unchanged.

(b) Introducing an extra zero level in addition to the one whose selection
probability is determined from the binomial distribution. This extra level has
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a selection probability equal to 1--q. These extensions satisfy Eqns (1) to (4),
with Eqns (I) and (2) becoming:

Pi- q Pi 1  - qA (16)

and

P; - q Pi + (1-q) - 1.0 (17)
i-I i-1

where L' is the number of levels for the array with q < 1.0, and equals
L+l.

The average number of elements of each non-zero level becomes, from
Eqn (8):

-i" p - q I pi (18)
mn-I rn-I

showing that the total number of elements is proportional to q.

4 PROPERTIES AS A FUNCTION OF THE NUMBER OF AMPLITUDE LEVELS

Expressions for the average sidelobe level as a function of the number of levels may
be derived by substituting into Eqn (7) for arrays with small numbers of amplitude levels.
For a naturally thinned array the average sidelobe level is givern by the following equation:

1 19

where the term in square brackets is the average sidelobe level of a density tapered array.
The average sidelobe level for an array with q < 1 is given by:

R AI A [1 + (L-1) Am q q2  A A2

LI-I m.
1 2 (20)

q 2  A Am]

Figure 1 shows how the values for the average sidelobe level S and the total
number of elements N change as the number of levels is increased. Values for § and R
were calculated both from Eqns as (8), (18), (19) and (20), and directly from arrays of
point sources or their radiation patterns. The close agreement obtained between the
different calculations demonstrates the validity of the equations. Rerults are shown for a
naturally thinned array and for one with q = 0.5.

An array aperture containing 812 elements when fully filled, with 32 across the
diameter, was used for all the calculations. The model amplitude distribution was a
40 dB (n = 4) Taylor distribution. For direct calculations arrays were set up using values

ml m mmm



for amplitude levels and selection probabilities from Eqns (13) and (14). Each of the
directly calculated values shown in Figure 2 is an average calculated from several arrays.

Figure I shows that an increase in the number of amplitude levels reduces the
average sidelobe level, as required. It also shows that this reduction is accompanied by
an unwanted increase in the number of elements in the array. As described by Eqn (19).
the sidelobe level of a naturally thinned array is reduced at a constant rate of -3 dB for
every factor of 2 (ie bit) increase in the number of non-zero amplitude levels. But, the
array ultimately becomes fully filled. In contrast the array with q = 0.5 remains thinned
as the number of amplitude levels is increased, but its average sidelobe level is not
reduced at a constant rate. It tends to an asymptotic limit.

The effect on the radiation patterns is shown in Figure 2. An increase in the
number of amplitude levels produces a much greater reduction in the sidelobes of the
naturally thinned array. Sample element distributions for a density tapered array and
density and amplitude tapered arrays with q equal to 1.0 and 0.5 are shown in Figure 3.

The average fill factor k for a naturally thinned array as a function of the number
of amplitude weights is given in Tible 3. The fill factor is the ratio of the actual
number of elements in an array to the total number if it were fully filled. The fill
factor of an array with q < I equals qk, ie that of the equivalent naturally thinned array
reduced by the factor q. The values in Table 3 were determined from sample arrays
with different numbers of elements when fully filled, and apply to all arrays large enough
for statistical density tapering. One extra level increases the factor k of a naturally
thinned array significantly, from 0.39 to 0.57. Sixteen extra levels increase it to 0.97, in
which case the array is only slightly thinned.

TABLE 3. Average fill factor of a naturally thinned array as a function of the number
of levels

Model amplitude distribution: 40 dB (n = 4) Taylor distribution

NUMBER FILL
OF OF FACTOR

LEVELS

2 0.39

3 0.57

5 0.74

9 0.89

17 0.97

The changes in array properties are due to those levels with probabilities given by
the binomial distribution. When the number of levels is infinite only the level exactly
equal to A is selected from them, since the standard deviation of the levels is zero, while
their average equals A. Only those levels with probabilities given by the binomial
distribution are allocated to a naturally thinned array, so that each element is allocated
with unity probability a level exactly equal to A at its location. Thus, as the number of
amplitude levels is increased from two to infinity, a naturally thinned array changes from
one that is density tapered to one that is both fully filled and fully amplitude tapered,
with the result that its average sidelobe level falls to zero.

9



When the number of levels of an array with q < I is infinite each element is
allocated either a level exactly equal to A. or the additional zero level. The selection
probabilities of these levels are q and I-q respectively. Thus, as the number of levels is
increased from two to infinity, an array with q < 1.0 changes from one that is density
tapered to one that is equivalent to a fully filled, fully amplitude tapered array from
which on average a proportion 1-q of elements have been removed at random. As the
array always remains thinned the element density cannot sufficiently approximate the model
amplitude distribution, so that the average sidelobe level tends to an asymptotic limit.
The value of this limit may derive from Eqn (20) to be:

2-q m- (21)

L1 ,An].
Because of the asymptotic limit the radiation pattern of the thinned array is always the
sum of two terms, so that its sidelobes are alwvays higher than the lowest obtainable from
an equivalent fully filled array.

The number of elements in an array may be kept constant by reducing q as the
number of levels is increased. In this case, however, the sidelobe level also remains
approximately constant. For example, the average sidelobe level of the sample array used
in the earlier calculations changes from -28.6 dB to -25.6 dB if the number of elements
is kept constant while the number of amplitude levels is increased from two to infinity.

S REDUCTION OF APERTURE SIZE REQUIRED TO PRODUCE A GIVEN
SIDELOBE LEVEL

The peak sidelobe level of a density tapered array is decreased as the aperture size
is increased, so that a minimum aperture size is required to produce a given sidelobe
level. Density and amplitude tapering can be combined to reduce this minimum aperture
size, and hence also the minimum number of elements required. This is illustrated in
Figure 4, which shows the peak sidelobe level of density and density and amplitude
tapered arrays as a function of M, and hence also the aperture size (equal to 0.25 MX2 )
and the number of elements (equal to qkM). It can be seen that the minimum value of
M to achieve, for example, a -40 dB sidelobe level is reduced by increasing the number
of amplitude levels.

The peak sidelobe level was calculated by adding 10 dB to the average sidelobe
level. This is a convenient and reasonably accurate approximation( 2 ). Graphs are shown
for naturally thinned arrays with two and five levels, and for arrays with q = 0.5 with
two and an infinite number of levels. The asymptotic limit was plotted for this last
graph, to show the maximum improvement possible. For the naturally thinned arrays in
Figure 4, Table 4 gives the minimum value for M, aperture size (expressed as the
diameter of a circular aperture of area 0.25 MX2 ), and the number of elements required
to achieve a -40 dB sidelobe level.

Figure 4 shows that the reduction possible in minimum aperture size is larger for
naturally thinned arrays than for arrays with q < 1.0. For naturally thinned arrays three
extra levels, for example, can halve the diameter of the minimum circular aperture from
205 to 100 wavelengths. The number of elements required is also approximately halved
(see Table 4).
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TABLE 4. Minimum circular aperture size and number of elements required to achieve a
-40 dB peak sidelobe level

DENSITY 5 LEVEL DENSITY
TAPERED AND AMPLITUDE

ARRAY TAPERED ARRAY

Diameter in 205 100
wavelengths

Approximate number
of element positions 410 50
across a diameter

Total number of
elements if array 132,000 32,000
fully filled, M

Fill factor 0.39 0.74

Actual number
oeemnsN51,400 23,400of elements N

6 CONCLUSIONS

There are three main conclusions. Firstly that density and amplitude tapering
cannot reduce the sidelobe levels of a density tapered array without an accompanying
increase in the number of elements. Secondly that even analog amplitude tapering (ie
using an infinite number of possible amplitude levels) cannot reduce the sidelobes of a
density tapered array to equal those of an equivalent fully filled amplitude tapered array.
Thirdly that density and amplitude tapering can significantly reduce the minimum aperture
size and number of elements required by a density tapered array to achieve a given
sidelobe level.
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FIGi. ARRAY PROPERTIES AS A FUNCTION OF THE NUMBER OF LEVELS

For a circular aperture array with 812 elements it fully filled, and having a
4OdIB (n =4) Taylor Model amplitude distribution.
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FIG. 2. IMPROVEMENT IN RADIATION PATTERN DUE TO EXTRA

AMPLITUDE WEIGHTS

Aperture size :Circular aperture with 812 total possible
element locations

Model amplitude distribution - 40 dB (n =d4) Taylor distribution
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Figure 3. ELEMENT DISTRIBUTIONS

Aperture size: Circular aperture with 612 total possible

element locations. 32 across a diameter

Model Amplitude distribution: 40dB Taylor
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Figure 4. PEAK SIDELOBE LEVL (S + 10dB) AS A FUNCTION

OF APERTUR SIZE (31)

Model amplitude distribution: 40dB (sk - 4) Taylor
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Abstract to Memorandum 4211

Statistical density and amplitude tapering are combined to improve
the radiation characteristics of thinned, density tapered arrays by
allowing changes in both element density and amplitude weight to better
approximate the model amplitude distribution. Statistical density
tapering (which uses only uniformly weighted elements) is extended so
that each element is allocated one of several possible values of
amplitude weight according to predefined selection probabilities.
Increasing the number of possible values, or levels, for amplitude
weight can reduce the sidelobe levels of an array. Several choices of
levels and their probabilities can reduce sidelobes and satisfy the
extension criteria. One of the lowest sidelobe levels is produced if:
(a) the amplitude levels are equispaced in the allowable range between
zero and unity, and (b) their selection probabilities are terms from
the binominal distribution of the appropriate order. The properties
of arrays designed using equispaced amplitude levels with binomially
distributed selection probabilities are calculated and described as a
function of the number of levels and aperture size. It was found
firstly that density and amplitude tapering cannot reduce the sidelobe
levels without an accompanying increase in the number of elements, and
secondly that it cannot sufficiently lower the sidelobes of a thinned,
density tapered array to equal the lowest obtainable from the comparable
fully filled, amplitude tapered array. Thirdly however it was found
that density and amplitude tapering can reduce the minimum aperture
size and number of elements required to achieve a given sidelobe level.


